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High-temperature series expansions for the (2 + 1)-dimensional 
Ising model 

H-X He, C J Hamer and J Oitmaa 
School of Physics, University of New South Wales, PO Box 1, Kensington 2033, NSW, 
Australia 

Received 11 December 1989 

Abstract. Using efficient cluster expansion methods,  the known high-temperature series 
for the vacuum energy, specific heat,  susceptibility and  mass gap  of the ( 2 +  I)-dimensional 
Ising model on the square and triangular lattices have been extended by several terms. 
Estimates of the critical indices demonstrate \.cry convincing universality with the Euclidean 
version of the model.  

1. Introduction 

The three-dimensional Ising model provides a paradigm of all phase transitions. Its 
equivalent in lattice Hamiltonian field theory is the ( 2  + 1)-dimensional Ising model, 
and the principle of universality tells us that the critical behaviour of these two models 
should be the same. Now universality has been shown to hold exactly for various 
models in two dimensions, but in three dimensions this is not the case, and it is 
important to check as accurately as possible that the principle holds good. With this 
purpose in mind, we have set out to calculate some further terms in the high-temperature 
series expansions for the ( 2  + 1)-dimensional model. 

Cluster expansion methods have been used previously by Hamer and Irving (1984b) 
and Hamer and Guttman (1989) to calculate high-temperature series for this model, 
but these earlier works did not use the most efficient algorithm possible to generate 
the required cluster configurations. By correcting this defect, we have been able to 
make very substantial extensions of these series. Low-temperature expansions for the 
model have previously been calculated by Pfeuty and Elliott (1971) and Marland (1981). 

In section 2 of the paper the cluster expansion methods of Nickel (1980) are 
reviewed, together with our techniques for generating clusters and their associated 
series. In section 3 the resulting series are presented and analysed, and our conclusions 
are discussed in section 4. The accuracy of the exponent estimates does not improve 
as much as we might have hoped; but still the consistency with the Euclidean model 
results is very satisfactory. 

2. Cluster expansion method 

The cluster expansion methods which we use were first proposed by Nickel (1980), 
and were described in later papers by Marland (1981), Irving and Hamer (1984) and 
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Hamer and Irving (1984b). For convenience, let us briefly paraphrase the basic 
arguments due to Nickel. 

Consider a lattice Hamiltonian of the form 

H = H , + x V  (2.1) 

where Ho is diagonal in the chosen set of basis states, and V is to be treated as a 
perturbation. For instance, in the present case the (2+ 1)-dimensional Ising model 
Hamiltonian is 

where ( ij ) denotes nearest-neighbour pairs of sites on the two-dimensional spatial 
lattice, the (+k are Pauli matrices acting on a two-state spin variable at each site, x 
corresponds to the inverse temperature /3 in the Euclidean formulation, and h is the 
magnetic field variable. Setting h = 0 for the moment, we choose a representation 
where a3(i) is diagonal, and take 

Ho=C (1 -a3(i)) (2.3) 
I 

(2.4) 

so that each term in V ‘flips’ the spins on a nearest-neighbour pair of sites (9). 

an iterative perturbation expansion for the energy E,, of the nth eigenstate: 
From the eigenvalue equation for the system, one can derive by standard methods 

E , = E : + x ( n l V / n ) +  
k = 2  

where I n ) ,  E: are the unperturbed eigenvector and eigenvalue, and P is a projection 
operator onto all states except In). Substituting iteratively for E, on the right-hand 
side, one arrives at the less elegant but more explicit Rayleigh-Schrodinger expansion 

E , = E : + x ( n I V / n ) + x 2  

Now let us consider two states of our system more closely, namely the ground state 
and the first excited state. For simplicity, we assume periodic boundary conditions. 

2.1. Ground-state energy 

The ground state is invariant under spatial transformations: in the Ising model at x = 0 
it corresponds to the state 10) with a3( i )  = + 1 on every site. One can always normalise 
the energy such that E: = 0. Then each term in the series (2.5) or (2.6) involves various 
powers of the operator V .  The series can now be rearranged according to site labels, 
grouping together all terms which involve perturbations (in this case, flip operators 
a, )  acting on each particular subset of sites on the lattice. Now the contribution of 
each such ‘cluster’ of sites is independent of its position on the lattice, and depends 
only on its topology or connectedness structure: so the terms can then be grouped into 
topologically distinct classes, and the ground-state energy on a large lattice of N sites 
can be written 

(2.7) 
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where C," is the number of ways of embedding a cluster of topology a on the lattice 
of N sites, and E ,  is the contribution of one such cluster. In the case at hand, the 
sites are connected via the 'link' operators u , ( i ) u l ( j ) ,  and the constants we need are 
the so-called 'weak embedding constants' (Domb 1974). 

One can similarly write the ground-state energy on any finite cluster of sites p as 

where C f  is the number of ways of embedding cluster a into cluster p. Now if the 
sites in the cluster /3 are not all connected, so that p can be split into two disconnected 
parts p ,  and p z ,  then E t  can be written as a simple sum: 

E{ = E t [ +  E $ .  (2.9) 

Writing this out in terms of the E,, one immediately sees that .sp must be identically 
zero, because one cannot embed cluster p into its sub-clusters P I  and p 2 :  so only 
connected or linked clusters contribute to Eo in the end, as we would expect. In a 
diagrammatic approach E,  is made up of all the perturbation theory diagrams which 
span the entire cluster CY (Hamer and Irving 1984a). 

Equation (2.8) provides an avenue for efficient calculation of the E, .  One can 
calculate E t  by standard methods (see below), and then the corresponding 'cumulant' 
energy E~ can be found by inverting (2.8): 

(2.10) 

where the index a' now runs over all the smaller sub-clusters embedded in p. So by 
starting with the smallest linked clusters and working upwards, one may generate a 
list of the E~ up to some maximum cluster size. These may then be inserted into 
equation (2.7) to give the bulk energy E:. 

are expressed as power series in x, then the first non-zero 
term in is O(X"') ,  m 3 n, where n is the number of links in the cluster, because it 
takes at least one power of V to span each link in the cluster. Thus we obtain a series 
for E,": which is exact up to a maximum order corresponding to the maximum cluster 
size. 

If the energies E {  and 

2.2. First excited-state energy 

Here we shall restrict ourselves specifically to the (2+  1)-dimensional Ising model, 
although the method may be applied more generally. The unperturbed eigenvector 
corresponding to the first excited state is 

(2.11) 

where 10) is the unperturbed ground state. Thus 11) is a spatially invariant combination 
of all states with a single spin 'flip'. Note the normalisation (111)= N. 

A perturbation expression for the energy of this state after two iterations may then 
be written as 

E ,  = ~ : + - ( i l  X ~ l i ) + -  1 v- V I l ) .  
N "'( N 1 E , - H  (2.12) 
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Next, Nickel argues that since the mass gap 

F = E l - E o  (2.13) 

is O ( N o )  while E,, is O ( N ' ) ,  we may replace E ,  by F in the denominator E , - H ,  
throw away all terms of higher order in N, and write 

X A 
F = E Y + - ( l I  VIl)+x'- 

N N 

where 

(2.14) 

(2.15) 

i.e. A incorporates only those terms of order one in N. Since E:= 0 and Eo is O ( x 2 N ) ,  
the subtraction of Eo from E ,  - H in the denominator affects only terms of higher 
order in N in the perturbation expansion, and therefore has no effect on (2.15). 

An iterative perturbation expansion for the quantity A can be written down in the 
usual manner, expanding in powers of V: 

(2.16) 

We can now go through an argument much the same as for the ground-state energy, 
to show that on the N-site lattice 

A N  = 1 C"'6, 
a' 

while on a finite cluster of sites p' 
A" = & CE:S, 

a 

(2.17) 

(2.18) 

so that the quantities aP, can be calculated by working up from small clusters to large 
ones just as for the ground-state energy. The major difference is that the mass gap 
does not obey the addition law (2.9), and so we cannot restrict ourselves only to linked 
clusters. The index a' runs over both connected and disconnected clusters; and the 
C,". are the terms of order N in the embedding constant of cluster ct'in the N-site lattice. 

2.3. Clusters and embedding constants 

To proceed with the derivation of series by this method it is necessary to obtain the 
following data: 

( a )  a list of all clusters which give contributions to the series, up to the order 
required; 

( b )  the embedding constants C: of the clusters for the lattice under consideration, 
in our case the square and triangular lattices; 

( c )  for each cluster a, a list of sub-clusters p and corresponding embedding 
constants C f .  

We have developed an efficient algorithm? for generating the list of clusters. Each 
cluster corresponds to a connected graph (see Domb (1974) for graph theoretical 

t This is based on a program and unpublished work of C J Elliott. 
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concepts pertinent to this work). All graphs of n, vertices and nb bonds can be generated 
by starting with n, isolated vertices and adding nh lines joining pairs of vertices, in all 
possible ways. As is well known, the number of graphs increases exponentially with 
size and it is inefficient to generate graphs which do  not, in fact, contribute to the final 
series. Therefore various constraints are imposed: for example, on the square lattice 
no graph with a vertex of order 5 or more and no graph which contains a triangle can 
contribute, so such graphs are eliminated during the generation process. 

For the susceptibility, which involves two ‘magnetic’ operators and any number of 
‘thermal’ operators, the lowest order at which a graph contributes is given by the 
following rule. 

Consider the bare graph and all graphs obtained from it by replacing one or more 
single bonds by double bonds. The order is the least number of bonds yielding a graph 
with either 0 or 2 vertices of odd order. This is illustrated in figure l ( a ) .  

Order . 2 3 4 L  L 5 6  

(0 )  

Graph :  / /. // A 6 A\ 
Order  . 1 2 3  2 4  L 

( b) 

Figure 1. ( a )  Examples of clusters which contribute to the susceptibility, together with the 
lowest order  in x at which they enter.  ( b )  Examples of clusters which contribute to  the 
mass gap, together with the lowest order  in x at which they enter. 

After the graph list has been produced the embedding constants or ‘lattice constants’ 
are obtained via direct enumeration using a fairly standard computer program. Another 
program is used to find subgraphs for any given graph, by testing whether each of the 
preceding graphs in the list can be embedded in it. At the same time the embedding 
constant is obtained. 

In this way we have generated the data required to compute the ground-state energy 
and susceptibility through order 16 for the square lattice and order 14 for the triangular 
lattice. The number of graphs which contribute in each case are: 

square lattice (order 16) 

triangular lattice (order 14) 

13 271 graphs 

33 522 graphs. 

For the mass gap series the procedure is similar, in general terms. However in this 
case disconnected graphs, including graphs with a single isolated vertex, also contribute. 
These are simply generated from the connected graph list, and the lattice constants 
are obtained by an algebraic procedure which is also computerised. In  this case the 
rule for the minimum order is as follows. 

Consider the bare graph and all double-bond derivatives as before. Then: 
( i )  if the graph has no isolated vertex, the number of odd vertices must be 0 or 2; 
( i i )  if the graph has an isolated vertex, the number of odd vertices must be 0. 

This is illustrated in figure 1 ( b ) .  
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We have generated the data required for the mass gap series through order 13 for 
the square lattice and through order 12 for the triangular lattice. The number of graphs 
(without isolated vertices) which contribute are: 

square lattice (order 13) 

triangular lattice (order 12) 

2223 graphs 

6831 graphs. 

2.4. Cluster energies 

The second major element of the program is the calculation of the cluster energies 
E t ,  or Ap for the mass gap. The first step is to generate the Hamiltonian matrix for 
a given cluster. The basis states can be conveniently labelled by their binary spin code 
(0 or 1 for each site depending whether the spin ( T ~  is + 1 or - 1): there are 2". states 
for a cluster of n, vertices. Then the Hamiltonian matrix can be given as three separate 
lists. 

(i)  Ho is diagonal, and contains 2" elements, which may be obtained simply by 
counting the number of 'down' spins in each basis state. 

( i i )  The 'thermal' perturbation operator V contains nb 'link' operators U,( i ) (T, ( j )  
for a cluster of nb bonds, and thus contains 2". x nb non-zero elements. The matrix 
element is unity in each case, so we list only the final states corresponding to each 
given initial state. 

(iii) The 'magnetic' perturbation operator contains n, 'site' operators a,( i ) ,  and 
so contains 2". x nL non-zero elements, which are listed in a similar fashion. 

Once the Hamiltonian matrix elements are known, the corresponding energy E t  
can be calculated as a power series by an efficient algorithm due to Hornby and Barber 
(1985). The perturbation expansion for A' has a similar structure, and can be calculated 
by a similar algorithm; except that in this latter case, the mass gap F itself appears in 
the energy denominators in equation (2.16). Hence one must proceed in an iterative 
manner: having computed F to O(x"), one must feed it back into the energy 
denominators and begin the computations all over again from scratch to get it correct 
to O(X"+'). This is not necessary for the ground-state energy. 

Having obtained the E t ,  it is a simple matter of combinatorics to obtain the 
cumulant energies E ~ ,  and the final bulk energy E : .  The entire set of calculations 
occupied some 220 CPU hours on an IBM 3090, using quadruple precision. 

3. Results and analysis 

From the ground-state energy one can derive series for the 'specific heat' 
- x2 d2Eo 
C(x)  = -- - 

N ax2 

- (x,-x)-u 
x - xc 

(where x, is the critical point) and the susceptibility 

x(x)  = -- - 

- (x,-x)-y. 
.Y - XL 
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The mass gap behaves as 

F - ( x , - x ) "  
\ - Y' 

(3.5) 

for the ground-stal Table 1 lists coefficients of the perturbation series in energy per 
site, E, /  N ,  the susceptibility ,y and the mass gap F. The coefficients up to ninth order 
on the square lattice and eighth order on the triangular lattice were previously calculated 
by Hamer and Guttmann (1989). 

3.1. Pade' approximants 

From the series for the susceptibility, the mass gap and the specific heat, we have 
extracted estimates for the critical point and the critical index using standard Pad6 
methods (Guttmann 1989). Unbiased estimates are obtained from Pad6 approximants 

Table 1. High-temperature series in x for the vacuum energy per site E,/ N ,  the susceptibility 
,y and the mass gap F. Coefficients of X "  are listed for the square lattice (upper half) and 
triangular lattice (lower half). 

n Eo/ N X F 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

IO 
11 
12 
13 
14 
15 
16 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

IO 
11  
12 
13 
14 

0 
0 

- 0.5 
0 

0 

0 

0 

0 

0 

0 

-0,46875 

- 1.1484375 

-4.395263671875 

- 20.6786155701 

- 110.752848078 

- 647.484427534 

- 4033,21806935 

0 
0 

-0.75 
-0.75 
- 1.359375 
- 3.09375 
- 8.35546875 
- 24.66796875 
- 78,1272583008 
- 260.223449707 
- 902.046897888 

-3227.54874810 
- 11852.6421807 
-44479.5726107 
- 170007.969892 

1 
4 

13.5 
45 

144.84375 
464.444444444 

1469.3 5850694 
4639.48234954 

14544.1 192397 
45537.4796633 

141947.730164 
442 100.534692 

13728 18.04093 
4260277.89708 

13 192459.0985 
40832888.3912 

1261 79285.8 13 

1 
6 

166.5 
843.046875 

42 18.41666667 
20941.0230035 

32.95 

103361.512587 
507986.371687 

2488222.50870 
12155136.2137 
59248156.0755 

288265613.837 
1400348 1 5 7.3 1 
6793608696.09 

2 
- 4  
- 2  
- 3  
- 4.5 

-11 
- 20.5078125 
-57.69921875 
- 114.83630371 1 
-350.106719971 
- 730.535977681 

-2312.13459937 
-5002,70683153 
- 16167,3575508 

2 
- 6  
-6  
- 10.5 
-31.5 
-98.53125 

-346.7109375 
- 1255.20556641 
-4795.43701172 

- 186577.8698883 
- 74627.2885 151 
- 302784.9801 11 
- 1248795.45214 
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to the logarithmic derivative of the function; and once the critical point is known, a 
'biased' estimate of the critical index can be obtained from Pad6 approximants to 

The best-behaved series, as one might expect, is the susceptibility on the triangular 
lattice. Unbiased estimates of the critical parameters obtained from the Dlog Padis 
are listed as an example in table 2 .  There is no objective way of finding the error in 
such estimates: as a rule of thumb, we have taken the spread between the last several 
entries in the Pad6 table and multiplied it by a factor of two or three. We note a 
consistent downward trend in the last few estimates of the index y, which indicates 
the true value is somewhat below 1.244. (The final results for the various series are 
listed in table 4 below.) 

For the specific heat series, the Pad6 approximant tables gave no stable or sensible 
result. This is a well known phenomenon, attributed to an additive, regular term in 
the specific heat at the critical point. 

(xc--x)(dldx) 1% F(x)l.T=.yc. 

Table 2. Dlog Pad6 approximants to the susceptibility on the triangular lattice. An asterisk 
denotes a defective approximant. 

N [ N / N  - 11 [ N I N I  [ N I N + l l  

Pole Residue Pole Residue Pole Residue 

2 0.209 61 ( 1.2432) 0.209 75 ( 1.2465) 0.209 76 (1.2468) 
3 0.209 76 (1.2469) 0.209 74 i 1.2464)* 0.209 70 (1.2478) 
4 0.209 80 (1.2483) 0.209 78 (1.2475) 0.209 76 (1,2462) 
5 0.209 78 (1.2472) 0.209 70 ( 1.2377)* 0.209 74 (1,2441) 
6 0.209 74 (1.2449) 0.209 74 (1.2444) 0.209 74 (1.2442) 
7 0.209 73 (1.2436) 

3.2. Ratio methods 

Ratio methods for the estimation of critical parameters have also been discussed by 
Guttmann (1989). If a function F has a series expansion 

c€ 

F ( z )  = a,z" 
n = O  

and behaves like 

as z + z , - ,  then the ratios 

an r, =- 
a n - ,  n - x  z ,  

(3.6) 

(3 .7)  

(3.8) 

and an even better estimate of the critical point can be obtained from the linear 
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extrapolants 

Unbiased estimates of the critical index can be obtained from 

= A  i o ( ; )  r 1 ( 2 - n ) r ~ + ( n - l ) ~ r ~ - ,  
nr, - ( n  - l ) r n - ,  

while if the critical point is known, biased estimates of A are given by 

n z , r , , - n + l = A + O  - . (3 

1783 

(3.9) 

(3.10) 

(3.11) 

A graph of the linear extrapolants 1 ,  against l / n  is shown for the triangular lattice 
susceptibility in figure 2 .  After jumping around for a while, the sequence of 1, values 
settles down to a quite stable and  consistent trend line. We have tried various methods 
for extrapolating this sequence to the limit n +E, such as Brezinski’s 8 algorithm, the 
Levin U transform, the Barber-Hamer algorithm, and the Neville-Aitken table, which 
have all been discussed by Guttmann (1989). Unfortunately, the sequence is not 
smooth enough for these methods to work at all wellt, and  we have found no  better 
technique than a simple extrapolation with ruler and  pencil, as shown in figure 2 .  The 
stability of the result can be tested by ‘end-shifting’ the sequence, n + n + E  in equation 
(3.9). Hence we obtain a final result as listed in table 4 below. 

Unbiased estimates o f the  critical index y obtained from equation (3.10) are graphed 
against l / n  in figure 3. The sequence shows similar behaviour to the 1, values. 

For the square lattice, the ratio method estimates oscillate strongly between even 
and  odd n values, due to the antiferromagnetic singularity present for this loose-packed 

/ 
/ 

Y’ 
0 2 0 9 7 0 k  

I 

0 0 10 0.20 
1 /n 

Figure 2. Linear extrapolants l , ,  for the triangular lattice susceptibility plotted against l / n .  
A straight line drawn to the axis gives our final estimate of the critical point. 

Guttmann ( 19891 advocates the use of an Euler transformation to ‘smooth’ the sequence beforehand, but 
we found this technique was of little help. 
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1 I 
0.10 0.20 
l/n 

1 
0 

Figure 3. Unbiased estimates of the critical index y obtained from the triangular lattice 
susceptibility ratios, plotted against l / n .  

lattice. We have used standard techniques to minimise this, but the final results are 
inevitably less accurate. The mass gap ratios on both lattices are also very 'noisy', and 
no very good estimate of the index v was obtained by this method. 

3.3. Diferential approximants 

Differential approximants (Guttmann 1989) can be regarded as generalisations of Pad6 
approximants, and have the advantage that they can accommodate more complicated 
singularity structures. The inhomogeneous differential approximants, for instance, can 
handle a function such as the specific heat which has an additive regular part: and 
indeed these approximants are found to be much more successful in estimating the 
specific heat index cy. For the mass gap, on the other hand, there is no additive regular 
part, and the homogeneous approximants perform much better than the inhomogeneous 
ones. In principle, the differential approximants should be able to handle confluent 
singularities as well, which are certainly expected to be present in this model; but the 
outcome for y and v does not show any great difference between Pad6 and differential 
approximants; nor did we see any great difference between the first- and second-order 
differential approximants. 

A table of differential approximants obtained using program NEWQGRD (Guttmann 
1989) for the triangular lattice susceptibility is presented as an example in table 3. 
Our critical parameter estimates obtained by all three methods are summarised in 
table 4. 

4. Conclusions 

Selecting the results which appear to be most accurate from table 4, we arrive at the 
final estimates listed in table 5. Also listed there are some of the best previous estimates 
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Table 3. Table of first-order differential approximants to the triangular lattice susceptibility. 
Estimates of x, and y ( i n  brackets) are shown which come from the [ L /  N + .\; N I ,  .I = 
- I ,  0, 1 ,  approximants, in the notation of Gittmann (1989). Defective approximants are 
asterisked. 

1 N = 4  N = 5  N = 6  

- 1  

L =  1 0 

+ I  

- 1  

L = 2  0 

+ l  

-1 

L = 3  0 

C l  

-1 

L = 4  0 

+1 

0.209 64 

0.209 75 

0.209 74 

(-1.233) 

( - 1.245) 

(-1.243 1 

0.209 68 

0.209 73 

0.209 7S* 

(-1.237) 

(-1.243) 

(-1.2451 

0.209 74 

0.209 74 

0.209 73 

(-1.244) 

( - 1.243) 

( -  1.242 

0.209 72 

0.209 73 

0.209 73 

(-1.239) 

i - 1.243) 

( -1.241 1 

0.209 74 0.209 74 

0.209 74 0.209 73* 

0.209 74 

(-1.2431 ( - 1.243 

( -  1.243 j ( -  1.243) 

( - 1.243 

0.209 76* 0.209 73 

0.209 73 

0.209 73 

(-1.237) ( -  1.241 ) 

( -1.243) 

(-1.241 

0.209 73 

0.209 73 
( -  1.243) 

( -  1.241 

0.209 73 
( - 1.242) 

Table 4. Table of critical parameter estimates obtained by each of the various methods. 
Specific heat C - ( x  - x,)-”; magnetic susceptibility X - ( x  - x,)-”; mass gap F - ( x  - x,)”. 

Critical index 

Unbiased Biased 
Critical 

V a Method point x, Y Y V a 

Triangular lattice 
Pades 0.209 74 ( 3 )  1.244 ( 3 )  0.641 ( 3 )  - 1.241 ( 3 )  0 .636(4)  - 
Ratios 0.209 71 (21 1.244 ( 2 )  - 0.16(3)  1.241 ( 3 )  0 .63(1)  0 .12(2)  
Diff. ( K  = 1 )  0.209 73 ( 2 )  1.242 ( 2 )  0.640 ( 4 )  0.12 ( 2 )  1.240 ( 4 )  0.636 ( 4 )  0.10 ( 2 )  
Approx. ( K  = 2 )  0.209 74 ( 4 )  1.243 ( 5 )  0.642 ( 8 )  0.11 (8 )  1.240 ( 4 )  0.640 ( 4 )  0.10 ( 2 )  

Square lattice 
Pades 0.32850(10)  1 .245(5)  0.641 110) - 1.245(3) 0 .638(2)  - 

D i f f . ( K = l )  0.328 51 ( 8 )  1 .244(6)  0.642 ( 5 )  - 1.244 ( 4 )  0.637 (4 )  0.11 ( 2 )  
Ratios 0.328 4 ( 3 )  1 .245(3)  - 0.15 ( 5 )  1.244(3) - 0.12 ( 2 )  

Approx. ( K  = 2 )  0.328 50 ( 4 )  1.244 ( 4 )  0.645 (10)  - 1.244(4) 0.643 ( 8 )  - 
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Table 5. A comparison of the results obtained in the present work with some previous 
calculations. H T  = high-temperature series; LT = low-temperature series; FS = finite-size 
scaling; MC = Monte Carlo; (b)  =biased; (ub)  =unbiased. 

(2  + 1 )-dimensional Ising model 

Triangular lattice 
LT Marland 1981 1.250 (12) 
FS Hamer and Johnson 1986 1.236 (8 )  
HT Hamer and Guttmann 1989 ( u b )  1.243 ( 4 )  

(b)  1.242(2) 
This work ( u b )  1.242 ( 2 )  

( b )  1.241 ( 3 )  

Square lattice 
LT Marland 1981 1.25 
FS Henkel 1984 - 
H T  Hamer & Guttmann ( u b )  1.239 ( 5 )  

(b )  1.245(4) 
This work (ub)  1.245 ( 3 )  

(b)  1.244(3) 

- 
0.627 (4)  
0.646 (8 )  
0.640 ( 5 ) 
0.641 (3 )  
0.636 (4 )  

- 
0.629 ( 2 )  
0.646 (8) 
0.640 ( 5 )  
0.642 ( 5 )  
0.638 ( 2 )  

(a ' )0 .098 (3) 
- 

- 
0.12 ( 2 )  
0.10 ( 2 )  

- 
0.15 ( 5 )  
0.11 ( 2 )  

0.209 8 (2)  
0.209 8 (2)  

0.209 72 ( 7 )  
0.209 72 ( 2 )  

0.329 (1 )  
0.328 (1) 
0.328 5 (4 )  

0.328 50 (4 )  

Three-dimensional Ising model 

HT Guttmann 1987 
MC Bhanot et a/  1989 

1.239 ( 3 )  0.632 (3)  
0.6295 (10) 

Field theory estimate 

LeGuillou and Zinn-Justin 1980 1.241 ( 2 )  0.630 ( 2 )  O.llO(5) 

by other authors. Allowing for a little optimism in the error bars here and  there, the 
critical exponents for the two lattices agree very well. For the index y, they also agree 
with estimates from the three-dimensional model and  field theory. For the index v, 
our estimates are still a little high: this is a common problem with high-temperature 
series estimates, and we observe a definite tendency for the estimates to decrease as 
more terms of the series are included. 

Our calculations have added four new terms to the mass-gap series for each lattice, 
and  six and  seven terms to the ground-state energy and susceptibility on the triangular 
and  square lattices, respectively. We have substantially improved estimates for the 
critical points, but the improvement for the critical indices is rather slight. Nevertheless 
the results bear out once more the universality between these two Hamiltonian lattice 
field theories and their Euclidean analogues. 
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